The “beReal” project

The firewood method

19th of January 2017
in the frame of the 5th Central European Biomass Conference, Graz, Austria

M. Wöhler, S. Pelz
University of Applied Forest Sciences
Outline

- Approach
- What is real life?
- Method development
- Demonstration
- Conclusion
Approach

What is “real-life” stove operation?

- WP 2
 - European survey of stove users
 - Field monitoring

Development of the new firewood stove testing method

- WP 3
 - Method development based on WP 2
 - Constant revision during project

- WP 4
 - Web based data evaluation tool

- WP 5
 - Validation

- WP 8
 - Round robin test

Demonstration

- WP 7
 - Field measurement

Output

- WP 6
 - Label development
What is “real-life”?

Field monitoring
- Measurement of draught conditions and frequency of use in field installations
- 20 appliances (in four countries)
- ~4 months duration
- Frequency of use
- Number of batches per heating cycle
- Duration of heating cycles / batches
- Draught conditions

European online survey*
- 28 questions about heating appliance, installation conditions, user behavior and fuel
- Available in seven languages
- Online for 14 consecutive weeks
- www.bereal-project.eu
- 2205 completed questionnaires
- Good regional distribution along different climate zones in Europe
- Unique overview on user behavior on European level

What is “real-life”?

Highlights of European online survey

- **Fuel**
 - Predominance of hardwood
 - 63% of respondents use only one fuel type (90% hardwood)
 - 26% using two fuel types (95% combinations with hardwood)

- **Batches per day**
 - 5 batches per heating session in the winter

User knowledge

- Yes, and I am operating it accordingly
- Yes, but I operate it on my own way
- No, but I found out myself
- I do not know
Method development

Quick User Guide (QUG)

- Basis for stove operation (testing and “real-life”)
- Provided by stove manufacturer
- Defines relevant operation procedure
 - Number of firewood pieces (incl. mass)
 - Fuel for ignition batch incl. placement in combustion chamber
 - Mass auf ignition batch
 - Recharging procedure
 - Combustion air settings

- QUG example -
Method development

Measurements

- Gaseous composition (FGC): O₂, CO₂, CO, NOₓ and OGC
- Flue gas temperature (T₁): thermocouple, centrally located in the flue pipe
- Flue gas velocity (v) and temperature (T₂)
- Draught measurement (Δp)
- Gravimetric PM measurement (PMₜₐ₇₅₂₆₈₃₈₉₅₁₀)
- Measurement of ambient air temperature (Tambient)

- Leakage test of appliance – before and after combustion tests (acc. to prEN 16510-1)
Method development

Fuel

✓ **Type**: Beech (preferably) or birch firewood provided by testing laboratory
✓ **Conditions**: Water content 15% ± 3%
✓ **Size**: As defined in the QUG
✓ **Fire starter**: Bio-based fire starter is mandatory (no paper or liquids)
✓ **Kindling material**: Spruce, beech or birch, max. 25% of ignition batch mass

Ignition batch:
Minimum batch mass (without kindling material) shall be ≥ 80% of the nominal load mass

Nominal load batch:
Size, number of firewood pieces and total batch mass is defined in the QUG. Only pieces with equal weight is allowed (± 10%)

Partial load:
Defined as 50% mass of the nominal load. Number and size of pieces and placement in the combustion chamber are defined in the QUG
Method development

Measurement cycle

- Constant controlled flue gas draught: -12 Pa ± 2 Pa
- PM measurement during batch 1, 3, 5 and 7 (during the whole batch duration)
- Time of recharging: CO₂ < 4% and < 25% of CO₂_{max} (option: CO₂ < 3% when CO₂_{max} was < 12%)

Combustion air settings:
- After 1st / 2nd / 5th batch: only one manual adjustment (defined by manufacturer) is permitted
- During batches (2nd to 8th): no manual adjustments are allowed
- After 8th batch: adjustment (defined by manufacturer) is permitted
- Adjustments done by a automatic control system is allowed permanently
Method development

Data evaluation

- Standardized data calculation and result reported by an online evaluation tool (developed in WP 4)
- Notified laboratories upload combustion test raw data and relevant appliance information
- Evaluation tool provide a final test report
- Data evaluation mostly based on prEN16510-1
- Results are calculated for all eight batches
Method development: Validation

Objectives:

✓ Identification of challenges in the measurement procedure and testing method
✓ Method repeatability and comparison with standard type testing
✓ Feedback loop for method development

Method:

✓ 9 stoves (acc. to EN 13240) were tested at different RTD partners (SP, DTI, HFR, TFZ, BE2020)
✓ Broad range of appliances from 4 kW to 10 kW:
 ✓ Firewood stoves in different price levels
 ✓ Firewood stoves with automatic combustion air control systems

Feedback for method development:

✓ Adjustments in the recharging criteria
✓ Modifications in the test rig (temperature measurement, PM measurement)
✓ New method showed good repeatability
Method development: Round robin test

Objectives:

✓ Provide performance data and method feedback of the new method
✓ Asses the effect of fuel quality
✓ Compare the new method with standard type testing

Method:

✓ One 5 kW stove was used for all tests
✓ Fuel was provided from HFR, in addition local fuel was used
✓ In total seven testing labs (3 with type testing accreditation)
Method development: Round robin test

Results:

- The “beReal” method can be reproduced in different laboratories
- The best reproducibility for the emissions is achieved for NOx, followed by CO, PM and OGC
- Increased reproducibility for test fuel without bark

x … mean value; s … between-laboratory standard deviation; CV … coefficient of variation
Demonstration

Field tests

Method:

- 13 firewood stoves in 4 countries
 - Day 1: End user normal operation
 - Day 2: End user operation according to QUG
 - Day 3: End user coached by RTD partner according to beReal

Results:

- The “beReal” method can reflect typical real life heating behavior
- No constant factor between standard type testing and beReal method is given
Conclusion

✓ New method was developed which considered real life stove operation

✓ Development was based on:
 ✓ Investigations on user behavior in real life stove operation (survey/field monitoring)
 ✓ Validation measurements
 ✓ Round robin tests

✓ Field tests were conducted to prove new method

✓ The new method is strongly correlated to real life stove operation

✓ High quality stoves can easier be distinguished from low quality appliances
The “beReal” project

The firewood method

M. Wöhler
woehler@hs-rottenburg.de
+49 7472 951 269

S. Pelz